YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Assessment of Adenosine Deaminase (Ada) Activity and Oxidative Stress in Patients With Chronic Tonsillitis

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

To emphasize the effectiveness of adenosine deaminase (ADA) enzyme, which has important roles in the differentiation of lymphoid cells, and oxidative stress in patients with chronic tonsillitis. Serum and tissue samples were obtained from 25 patients who underwent tonsillectomy due to recurrent episodes of acute tonsillitis. In the control group, which also had 25 subjects, only serum samples were taken as obtaining tissue samples would not have been ethically appropriate. ADA enzyme activity, catalase (CAT), carbonic anhydrase (CA), nitric oxide (NO) and malondialdehyde (MDA) were measured in the serum and tissue samples of patients and control group subjects. The serum values of both groups were compared. In addition, the tissue and serum values of patients were compared. Serum ADA activity and the oxidant enzymes MDA and NO values of the patient group were significantly higher than those of the control group (p < 0.001), the antioxidant enzymes CA and CAT values of the patient group were significantly lower than those of the control group (p < 0.001). In addition, while CA, CAT and NO enzyme levels were found to be significantly higher in the tonsil tissue of the patient group when compared to serum levels (p < 0.05), there was no difference between tissue and serum MDA and ADA activity (p > 0.05). Elevated ADA activity may be effective in the pathogenesis of chronic tonsillitis both by impairing tissue structure and contributing to SOR formation.

Description

Kozan, Ahmet/0000-0002-7442-694X

Keywords

Chronic Tonsillitis, Adenosine Deaminase (Ada), Oxidative Stress, Malondialdehyde (Mda)

Turkish CoHE Thesis Center URL

WoS Q

Q2

Scopus Q

Q1

Source

Volume

271

Issue

6

Start Page

1797

End Page

1802