YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

End-To Computerized Diagnosis of Spondylolisthesis Using Only Lumbar X-Rays

dc.authorid Varcin, Fatih/0000-0002-5100-3012
dc.authorscopusid 57190736041
dc.authorscopusid 55900695500
dc.authorscopusid 57200879587
dc.authorscopusid 56857290300
dc.authorscopusid 10440502900
dc.authorwosid Varçın, Fatih/Abe-7006-2020
dc.authorwosid Erbay, Hasan/F-1093-2016
dc.authorwosid Çetin, Eyüp/Acq-1967-2022
dc.authorwosid Kültür, Turgut/R-7351-2019
dc.contributor.author Varcin, Fatih
dc.contributor.author Erbay, Hasan
dc.contributor.author Cetin, Eyup
dc.contributor.author Cetin, Ihsan
dc.contributor.author Kultur, Turgut
dc.date.accessioned 2025-05-10T17:10:32Z
dc.date.available 2025-05-10T17:10:32Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Varcin, Fatih] Kirikkale Univ, Fac Engn, Dept Comp Engn, TR-71451 Kirikkale, Turkey; [Erbay, Hasan] Univ Turkish Aeronaut Assoc, Fac Engn, Dept Comp Engn, TR-06790 Ankara, Turkey; [Cetin, Eyup] Van Yuzuncu Yil Univ, Fac Med, Dept Neurosurg, TR-65080 Van, Turkey; [Cetin, Ihsan] Hitit Univ, Dept Med Biochem, Fac Med, TR-19040 Corum, Turkey; [Kultur, Turgut] Kirikkale Univ, Fac Med, Dept Phys Med & Rehabil, TR-71450 Kirikkale, Turkey en_US
dc.description Varcin, Fatih/0000-0002-5100-3012 en_US
dc.description.abstract Lumbar spondylolisthesis (LS) is the anterior shift of one of the lower vertebrae about the subjacent vertebrae. There are several symptoms to define LS, and these symptoms are not detected in the early stages of LS. This leads to disease progress further without being identified. Thus, advanced treatment mechanisms are required to implement for diagnosing LS, which is crucial in terms of early diagnosis, rehabilitation, and treatment planning. Herein, a transfer learning-based CNN model is developed that uses only lumbar X-rays. The model was trained with 1922 images, and 187 images were used for validation. Later, the model was tested with 598 images. During training, the model extracts the region of interests (ROIs) via Yolov3, and then the ROIs are split into training and validation sets. Later, the ROIs are fed into the fine-tuned MobileNet CNN to accomplish the training. However, during testing, the images enter the model, and then they are classified as spondylolisthesis or normal. The end-to-end transfer learning-based CNN model reached the test accuracy of 99%, whereas the test sensitivity was 98% and the test specificity 99%. The performance results are encouraging and state that the model can be used in outpatient clinics where any experts are not present. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s10278-020-00402-5
dc.identifier.endpage 95 en_US
dc.identifier.issn 0897-1889
dc.identifier.issn 1618-727X
dc.identifier.issue 1 en_US
dc.identifier.pmid 33432447
dc.identifier.scopus 2-s2.0-85099399721
dc.identifier.scopusquality Q1
dc.identifier.startpage 85 en_US
dc.identifier.uri https://doi.org/10.1007/s10278-020-00402-5
dc.identifier.uri https://hdl.handle.net/20.500.14720/7464
dc.identifier.volume 34 en_US
dc.identifier.wos WOS:000607060000003
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Lumbar Spondylolisthesis en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Yolo en_US
dc.subject Transfer Learning en_US
dc.title End-To Computerized Diagnosis of Spondylolisthesis Using Only Lumbar X-Rays en_US
dc.type Article en_US

Files