YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical Simulations of the Fractional-Order Siq Mathematical Model of Corona Virus Disease Using the Nonstandard Finite Difference Scheme

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Univ Putra Malaysia Press

Abstract

This paper proposes a novel nonlinear fractional-order pandemic model with Caputo derivative for corona virus disease. A nonstandard finite difference (NSFD) approach is presented to solve this model numerically. This strategy preserves some of the most significant physical properties of the solution such as non-negativity, boundedness and stability or convergence to a stable steady state. The equilibrium points of the model are analyzed and it is determined that the proposed fractional model is locally asymptotically stable at these points. Non-negativity and boundedness of the solution are proved for the considered model. Fixed point theory is employed for the existence and uniqueness of the solution. The basic reproduction number is computed to investigate the dynamics of corona virus disease. It is worth mentioning that the non-integer derivative gives significantly more insight into the dynamic complexity of the corona model. The suggested technique produces dynamically consistent outcomes and excellently matches the analyticalworks. To illustrate our results, we conduct a comprehensive quantitative study of the proposed model at various quarantine levels. Numerical simulations show that can eradicate a pandemic quickly if a human population implements obligatory quarantine measures at varying coverage levels while maintaining sufficient knowledge.

Description

Bakar, Abu/0009-0005-3725-990X

Keywords

Corona Virus Disease, Caputo Fractional Derivative, Basic Reproduction Number, Local Stability, Nonstandard Finite Difference Method

Turkish CoHE Thesis Center URL

WoS Q

N/A

Scopus Q

Q3

Source

Volume

16

Issue

3

Start Page

391

End Page

411