YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Numerical Simulations of the Fractional-Order Siq Mathematical Model of Corona Virus Disease Using the Nonstandard Finite Difference Scheme

dc.authorid Bakar, Abu/0009-0005-3725-990X
dc.authorscopusid 25932481300
dc.authorscopusid 57930775600
dc.authorscopusid 57365773100
dc.authorscopusid 6603328862
dc.authorwosid Raza, Nauman/Adu-2858-2022
dc.authorwosid Tunç, Cemil/Afh-0945-2022
dc.contributor.author Raza, N.
dc.contributor.author Bakar, A.
dc.contributor.author Khan, A.
dc.contributor.author Tunc, C.
dc.date.accessioned 2025-05-10T17:12:16Z
dc.date.available 2025-05-10T17:12:16Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Raza, N.; Bakar, A.; Khan, A.] Univ Punjab, Dept Math, Quaid E Azam Campus, Lahore, Pakistan; [Tunc, C.] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey en_US
dc.description Bakar, Abu/0009-0005-3725-990X en_US
dc.description.abstract This paper proposes a novel nonlinear fractional-order pandemic model with Caputo derivative for corona virus disease. A nonstandard finite difference (NSFD) approach is presented to solve this model numerically. This strategy preserves some of the most significant physical properties of the solution such as non-negativity, boundedness and stability or convergence to a stable steady state. The equilibrium points of the model are analyzed and it is determined that the proposed fractional model is locally asymptotically stable at these points. Non-negativity and boundedness of the solution are proved for the considered model. Fixed point theory is employed for the existence and uniqueness of the solution. The basic reproduction number is computed to investigate the dynamics of corona virus disease. It is worth mentioning that the non-integer derivative gives significantly more insight into the dynamic complexity of the corona model. The suggested technique produces dynamically consistent outcomes and excellently matches the analyticalworks. To illustrate our results, we conduct a comprehensive quantitative study of the proposed model at various quarantine levels. Numerical simulations show that can eradicate a pandemic quickly if a human population implements obligatory quarantine measures at varying coverage levels while maintaining sufficient knowledge. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.47836/mjms.16.3.01
dc.identifier.endpage 411 en_US
dc.identifier.issn 1823-8343
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85140027797
dc.identifier.scopusquality Q3
dc.identifier.startpage 391 en_US
dc.identifier.uri https://doi.org/10.47836/mjms.16.3.01
dc.identifier.uri https://hdl.handle.net/20.500.14720/7836
dc.identifier.volume 16 en_US
dc.identifier.wos WOS:000864754600001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Univ Putra Malaysia Press en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Corona Virus Disease en_US
dc.subject Caputo Fractional Derivative en_US
dc.subject Basic Reproduction Number en_US
dc.subject Local Stability en_US
dc.subject Nonstandard Finite Difference Method en_US
dc.title Numerical Simulations of the Fractional-Order Siq Mathematical Model of Corona Virus Disease Using the Nonstandard Finite Difference Scheme en_US
dc.type Article en_US

Files