YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Prediction of Corrosion Susceptibilities of Al-Based Metal Matrix Composites Reinforced With Sic Particles Using Artificial Neural Network

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Sage Publications Ltd

Abstract

In this theoretical study, the prediction of the corrosion resistance of Al-Si-Mg-based metal matrix composites reinforced with SiC particles has been studied, using an artificial neural network. Four input vectors were used in the construction of the proposed network; namely, volume fraction of SiC reinforcement, aging time of the composites, environmental conditions, and potential. Current was used as the one output in the proposed network. Test results indicate that the proposed network can be used efficiently for the prediction of the corrosion resistance of Al-Si-Mg-based metal matrix composites reinforced with SiC particles, and the methodology is suitable for engineers to study the corrosion of metal matrix composites. In addition, a few forecasts regarding the polarization response for different SiC volume fractions and aging conditions have also been generated without using any experimental data.

Description

Tuntas, Remzi/0000-0001-7973-2412; Dikici, Burak/0000-0002-7249-923X

Keywords

Artificial Neural Network, Metal Matrix Composite, Corrosion, Modeling

Turkish CoHE Thesis Center URL

WoS Q

Q3

Scopus Q

Q2

Source

Volume

49

Issue

27

Start Page

3431

End Page

3438