YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Prediction of Corrosion Susceptibilities of Al-Based Metal Matrix Composites Reinforced With Sic Particles Using Artificial Neural Network

dc.authorid Tuntas, Remzi/0000-0001-7973-2412
dc.authorid Dikici, Burak/0000-0002-7249-923X
dc.authorscopusid 55874010700
dc.authorscopusid 23501298200
dc.authorwosid Dikici, Burak/A-2054-2009
dc.contributor.author Tuntas, Remzi
dc.contributor.author Dikici, Burak
dc.date.accessioned 2025-05-10T17:39:55Z
dc.date.available 2025-05-10T17:39:55Z
dc.date.issued 2015
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Tuntas, Remzi] Yuzuncu Yil Univ, Ercis Tech Vocat Sch Higher Educ, TR-65400 Van, Turkey; [Dikici, Burak] Yuzuncu Yil Univ, Dept Mech Engn, Van, Turkey en_US
dc.description Tuntas, Remzi/0000-0001-7973-2412; Dikici, Burak/0000-0002-7249-923X en_US
dc.description.abstract In this theoretical study, the prediction of the corrosion resistance of Al-Si-Mg-based metal matrix composites reinforced with SiC particles has been studied, using an artificial neural network. Four input vectors were used in the construction of the proposed network; namely, volume fraction of SiC reinforcement, aging time of the composites, environmental conditions, and potential. Current was used as the one output in the proposed network. Test results indicate that the proposed network can be used efficiently for the prediction of the corrosion resistance of Al-Si-Mg-based metal matrix composites reinforced with SiC particles, and the methodology is suitable for engineers to study the corrosion of metal matrix composites. In addition, a few forecasts regarding the polarization response for different SiC volume fractions and aging conditions have also been generated without using any experimental data. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1177/0021998314565430
dc.identifier.endpage 3438 en_US
dc.identifier.issn 0021-9983
dc.identifier.issn 1530-793X
dc.identifier.issue 27 en_US
dc.identifier.scopus 2-s2.0-84944112136
dc.identifier.scopusquality Q2
dc.identifier.startpage 3431 en_US
dc.identifier.uri https://doi.org/10.1177/0021998314565430
dc.identifier.uri https://hdl.handle.net/20.500.14720/15032
dc.identifier.volume 49 en_US
dc.identifier.wos WOS:000362592500008
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Neural Network en_US
dc.subject Metal Matrix Composite en_US
dc.subject Corrosion en_US
dc.subject Modeling en_US
dc.title Prediction of Corrosion Susceptibilities of Al-Based Metal Matrix Composites Reinforced With Sic Particles Using Artificial Neural Network en_US
dc.type Article en_US

Files