YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On the Tensile Behaviour of Bio-Sourced 3d-Printed Structures From a Microstructural Perspective

dc.authorid Guessasma, Sofiane/0000-0002-4412-473X
dc.authorid Altin, Abdullah/0000-0003-4372-8272
dc.authorscopusid 6701476905
dc.authorscopusid 22978674100
dc.authorscopusid 36934243100
dc.contributor.author Guessasma, Sofiane
dc.contributor.author Belhabib, Sofiane
dc.contributor.author Altin, Abdullah
dc.date.accessioned 2025-05-10T17:04:32Z
dc.date.available 2025-05-10T17:04:32Z
dc.date.issued 2020
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Guessasma, Sofiane] INRAE, UR1268 Biopolymeres Interact Assemblages, F-44300 Nantes, France; [Belhabib, Sofiane] Univ Nantes, Oniris, CNRS, IUMR,GEPEA,UMR 6144, F-44000 Nantes, France; [Altin, Abdullah] Yuzuncu Yil Univ, Van Vocat Higher Sch, Dept Mech & Met Technol, TR-65100 Van, Turkey en_US
dc.description Guessasma, Sofiane/0000-0002-4412-473X; Altin, Abdullah/0000-0003-4372-8272 en_US
dc.description.abstract The influence of the microstructural arrangement of 3D-printed polylactic acid (PLA) on its mechanical properties is studied using both numerical and experimental approaches. Thermal cycling during the laying down of PLA filament is investigated through infra-red measurements for different printing conditions. The microstructure induced by 3D printing is determined using X-ray micro-tomography. The mechanical properties are measured under tensile testing conditions. Finite element computation is considered to predict the mechanical performance of 3D-printed PLA by converting the acquired 3D images into structural meshes. The results confirm the leading role of the printing temperature on thermal cycling during the laying down process. In addition, the weak influence of the printing temperature on the stiffness of 3D-printed PLA is explained by the relatively small change in porosity content. However, the influence of the printing temperature on the ultimate properties is found to be substantial. This major influence is explained from finite element predictions as an effect of pore connectivity which is found to be the control factor for tensile strength. en_US
dc.description.sponsorship SFR IBSM federation [4202] en_US
dc.description.sponsorship This work is conducted in the framework of SFR IBSM federation Nffi 4202. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.3390/polym12051060
dc.identifier.issn 2073-4360
dc.identifier.issue 5 en_US
dc.identifier.pmid 32384658
dc.identifier.scopus 2-s2.0-85085244796
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.3390/polym12051060
dc.identifier.uri https://hdl.handle.net/20.500.14720/6035
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:000541431100065
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fused Deposition Modelling en_US
dc.subject Pla Tensile Properties en_US
dc.subject X-Ray Micro-Tomography en_US
dc.subject Finite Element Computation en_US
dc.subject Infra-Red Measurements en_US
dc.subject High-Speed Camera en_US
dc.subject Damage Modelling en_US
dc.subject Printing Temperature en_US
dc.subject Thermal Cycling en_US
dc.subject Microstructure en_US
dc.title On the Tensile Behaviour of Bio-Sourced 3d-Printed Structures From a Microstructural Perspective en_US
dc.type Article en_US

Files