YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Superelasticity and Compression Behavior of Porous Tini Alloys Produced Using Mg Spacers

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Abstract

In the scope of the present study, Ni-rich TiNi (Ti-50.6 at %Ni) foams with porosities in the range 38-59% were produced by space holder technique using spherical magnesium powders as space formers. Single phase porous TiNi alloys produced with spherical pores were subjected to loading-unloading cycles in compression up to 250 MPa stress levels at different temperatures in as-processed and aged conditions. It has been observed that strength, elastic modulus and critical stress for inducing martensite decrease with increasing porosity. Partial superelasticity was observed for all porosity levels at different test temperatures and conditions employed. Irrecoverable strain was found to decrease with pre-straining and with increasing test temperature. Unlike in bulk TiNi alloys a constant stress plateau has not been observed during the compression testing of porous TiNi alloys. Instead linear superelasticity with a quite steep slope allowing 5% applied strain to be recovered after pre-straining or aging was observed. Even at test temperatures higher than austenite finish temperature in as-sintered and aged condition, strain applied could not be recovered fully. due to martensite stabilization resulting from heavy deformation of macro-pore walls and sintering necks. TiNi foams produced with porosities in the range of 38-51% meet the main requirements of biomaterials in terms of mechanical properties for use as bone implant. (c) 2012 Elsevier Ltd. All rights reserved.

Description

Aydogmus, Tarik/0000-0002-0928-5095

Keywords

Porous Tini, Superelasticity, Powder Metallurgy, Aging, Martensitic Transformations

Turkish CoHE Thesis Center URL

WoS Q

Q2

Scopus Q

Q2

Source

Volume

15

Issue

Start Page

59

End Page

69