YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Performance Evaluation of Pdo Algorithm Through Benchmark Functions and Mlp Training

dc.authorscopusid 57211714693
dc.authorscopusid 26031603700
dc.authorscopusid 57186395300
dc.authorscopusid 58295808300
dc.authorwosid Ekinci, Serdar/Aaa-7422-2019
dc.authorwosid Kayri, Murat/Hlh-4902-2023
dc.authorwosid Eker, Erdal/Hkn-7889-2023
dc.contributor.author Eker, Erdal
dc.contributor.author Kayri, Murat
dc.contributor.author Ekinci, Serdar
dc.contributor.author Kacmaz, Mehmet Ali
dc.date.accessioned 2025-05-10T17:18:28Z
dc.date.available 2025-05-10T17:18:28Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Eker, Erdal] Mus Alparslan Univ, Vocat Sch Social Sci, Mus, Turkiye; [Kayri, Murat] Van Yuzuncu Yil Univ, Dept Comp & Instruct Technol Educ, Van, Turkiye; [Ekinci, Serdar] Batman Univ, Dept Comp Engn, Batman, Turkiye; [Kacmaz, Mehmet Ali] Haci Rahime Ulusoy Maritime Vocat High Sch, Istanbul, Turkiye; [Ekinci, Serdar] Middle East Univ, MEU Res Unit, Amman, Jordan en_US
dc.description.abstract Metaheuristic algorithms have become very common in the last two decades. The flexibility and ability to overcome obstacles in solving global problems have increased the use of metaheuristic algorithms. In the training of multilayer perceptron (MLP), metaheuristic algorithms have been preferred for many years due to their good classification capabilities and low error values. Therefore, this study evaluates the performance of the Prairie dog optimization (PDO) algorithm for MLP training. In this context, there are two main focuses in this study. The first one is to test the performance of the PDO algorithm through test functions and to compare it with different metaheuristic algorithms for demonstration of its superiority, and the second is to train MLP using the IRIS dataset with the PDO algorithm. As the PDO is one of the most recent metaheuristic algorithms, the lack of any study on this subject is the motivation for the article. PDO algorithm can be used in real-world problems as a powerful optimizer, as it reaches the minimum point in functions, and can also be used as a classification algorithm because it has successfully performed in MLP training. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.5152/electr.2023.22179
dc.identifier.endpage 606 en_US
dc.identifier.issn 2619-9831
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85175005572
dc.identifier.scopusquality Q3
dc.identifier.startpage 597 en_US
dc.identifier.trdizinid 1264858
dc.identifier.uri https://doi.org/10.5152/electr.2023.22179
dc.identifier.uri https://hdl.handle.net/20.500.14720/9695
dc.identifier.volume 23 en_US
dc.identifier.wos WOS:001093363400017
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Aves en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Classification en_US
dc.subject Metaheuristics en_US
dc.subject Multilayer Perceptron en_US
dc.subject Prairie Dog Optimization en_US
dc.title Performance Evaluation of Pdo Algorithm Through Benchmark Functions and Mlp Training en_US
dc.type Article en_US

Files