YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Apoptotic, Cytotoxic and Genotoxic Effect of Novel Binuclear Boron-Fluoride Complex on Endometrial Cancer

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

Endometrial cancer (EC) is one of the most common types of gynecologic cancer of the female genital tract; it considered being the fourth leading death factor among other types of cancer. Therefore, developing new anti-cancer agents are crucial for cancer treatment. Based on the potential of Schiff based complexes for the induction of apoptosis, Schiff base compounds, and their metal complexes displayed excellent anticancer properties. In this current study, antiproliferative activity of [L(BF2)(2)] as a novel binuclear boron-fluoride complex was examined to preliminary research in eight different cell lines, HELA, DU-145, PC3, DLD-1, ECC-1, PNT1-A, HT-29, and MCF-7, it was found to have a potent, suppressive effect on human endometrial adenocarcinoma cell line ECC-1. Based on this data, later investigated its apoptotic, cytotoxic, and genotoxic properties on human endometrial adenocarcinoma cell line ECC-1 in different concentrations. Apoptotic and cytotoxic tests such as single cell gel electrophoresis assay (comet assay), DNA fragmentation laddering, acridine orange test for DNA damage, and ELISA for apoptotic measurement was performed. We also gauged the oxidative status by evaluating total antioxidant status (TAS) and total oxidant status (TOS). Oxidative stress index (OSI) was calculated too. As a result [L(BF2)(2)] has been found to have a marvelous effect on ECC-1 cells, especially in damaging their DNA and cause a series of reactions lead to apoptosis. Taken together, it suggests that the [L(BF2)(2)] complex can induce the apoptotic pathway of endometrial cancer cells and is a possible candidate for future cancer treatment studies.

Description

Tuluce, Yasin/0000-0002-7312-5934; Koyuncu, Ismail/0000-0002-9469-4757; Kilic, Ahmet/0000-0001-9073-4339; Durgun, Mustafa/0000-0003-3012-7582

Keywords

Apoptosis, Cytotoxicity, Endometrial Cancer, Dna Damage, Chemotherapy

Turkish CoHE Thesis Center URL

WoS Q

Q3

Scopus Q

Q2

Source

Volume

30

Issue

6

Start Page

933

End Page

944