YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Some Ergodic Properties of Multipliers on Commutative Banach Algebras

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Tubitak Scientific & Technological Research Council Turkey

Abstract

A commutative semisimple regular Banach algebra Sigma(A) with the Gelfand space Sigma(A) is called a Ditkin algebra if each point of Sigma(A) boolean OR {infinity} is a set of synthesis for A. Generalizing the Choquet-Deny theorem, it is shown that if T is a multiplier of a Ditkin algebra A, then {phi is an element of A* : T* phi = phi} is finite dimensional if and only if card F-T is finite, where F-T = {gamma is an element of Sigma(A) : (T) over cap (gamma) = 1} and (T) over cap is the Helgason-Wang representation of T.

Description

Keywords

Commutative Banach Algebra, Multiplier, Choquet-Deny Theorem

Turkish CoHE Thesis Center URL

WoS Q

Q2

Scopus Q

Q2

Source

Volume

43

Issue

3

Start Page

1721

End Page

1729