YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Effect of Ferritin, Inr, and D-Dimer Immunological Parameters Levels as Predictors of Covid-19 Mortality: a Strong Prediction With the Decision Trees

dc.authorid Huyut, Mehmet Tahir/0000-0002-2564-991X
dc.authorscopusid 57188572324
dc.authorscopusid 55394375700
dc.contributor.author Huyut, Mehmet Tahir
dc.contributor.author Huyut, Zubeyir
dc.date.accessioned 2025-05-10T16:46:09Z
dc.date.available 2025-05-10T16:46:09Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Huyut, Mehmet Tahir] Erzincan Binali Yildirim Univ, Fac Med, Dept Biostat & Med Informat, Erzincan, Turkiye; [Huyut, Zubeyir] Van Yuzuncu Yil Univ, Fac Med, Dept Biochem, Van, Turkiye en_US
dc.description Huyut, Mehmet Tahir/0000-0002-2564-991X en_US
dc.description.abstract Background and objective: A hyperinflammatory environment is thought to be the distinctive characteristic of COVID-19 infection and an important mediator of morbidity. This study aimed to determine the effect of other immunological parameter levels, especially ferritin, as a predictor of COVID-19 mortality via decision-trees analysis.Material and method: This is a retrospective study evaluating a total of 2568 patients who died (n = 232) and recovered (n = 2336) from COVID-19 in August and December 2021. Immunological laboratory data were compared between two groups that died and recovered from patients with COVID-19. In addition, decision trees from machine learning models were used to evaluate the performance of immunological parameters in the mortality of the COVID-19 disease. Results: Non-surviving from COVID-19 had 1.75 times higher ferritin, 10.7 times higher CRP, 2.4 times higher D-dimer, 1.14 times higher international-normalized-ratio (INR), 1.1 times higher Fibrinogen, 22.9 times higher procalcitonin, 3.35 times higher troponin, 2.77 mm/h times higher erythrocyte-sedimentation-rate (ESR), 1.13sec times longer prothrombin time (PT) when compared surviving patients. In addition, our interpretable decision tree, which was constructed with only the cut-off values of ferritin, INR, and D-dimer, correctly predicted 99.7% of surviving patients and 92.7% of non-surviving patients.Conclusions: This study perfectly predicted the mortality of COVID-19 with our interpretable decision tree constructed with INR and D-dimer, especially ferritin. For this reason, we think that it may be important to include ferritin, INR, and D-dimer parameters and their cut-off values in the scoring systems to be planned for COVID-19 mortality. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.heliyon.2023.e14015
dc.identifier.issn 2405-8440
dc.identifier.issue 3 en_US
dc.identifier.pmid 36919085
dc.identifier.scopus 2-s2.0-85150381857
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.heliyon.2023.e14015
dc.identifier.uri https://hdl.handle.net/20.500.14720/1064
dc.identifier.volume 9 en_US
dc.identifier.wos WOS:000952495900001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Cell Press en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Covid-19 en_US
dc.subject Mortality Risk Biomarkers en_US
dc.subject Coagulation Tests en_US
dc.subject Immunological Tests en_US
dc.subject Ferritin en_US
dc.subject Chaid Decision Trees en_US
dc.subject Machine Learning en_US
dc.subject Artificial Intelligence en_US
dc.title Effect of Ferritin, Inr, and D-Dimer Immunological Parameters Levels as Predictors of Covid-19 Mortality: a Strong Prediction With the Decision Trees en_US
dc.type Article en_US

Files