YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A New Approach in the Treatment of Traumatic Brain Injury: the Effects of Levosimendan on Necrosis, Apoptosis, and Oxidative Stress

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science inc

Abstract

- OBJECTIVE: Traumatic brain injury (TBI) is an essential and common health problem worldwide. Levosimendan is an inotropic and vasodilator drug used to treat heart failure. Moreover, it exerts pleiotropic effects and, thus, protective effects on many organs. The present study aimed to investigate the effect of levosimendan on necrosis, apoptosis, and reactive oxygen species in rats with TBI. - METHODS: The study included 28 female Wistar-Albino rats weighing 200-250 g. The rats were divided into 4 groups with 7 rats each as follows: Group 1: No trauma group (Control), Group 2: Traumatized, untreated group (T), Group 3: Levosimendan was administered at a dose of 12 mg/kg intraperitoneally 1 hour after the trauma (L1), Group 4: Levosimendan was administered at a dose of 12 mg/kg intraperitoneally 2 hours after the concussion (L2). After the experiment, the rats were decapitated, and the brain tissue was removed. Necrosis was assessed with Cresyl violet staining, apoptosis was assessed with immunohistochemical analysis, superoxide dismutase and catalase levels were measured with the spectrophotometric method, and malondialdehyde (MDA) levels were assessed by High-Performance Liquid Chromatography. - RESULTS: The number of necrotic cells in the L1 and L2 groups was significantly lower than in the K and T groups (P = 0.015 and P = 0.03, respectively). Although the active caspase-3 level was signified considerably in the T, L1, and L2 groups compared to the K group, no significant difference was found among these 3 groups (P > 0.05). The results of superoxide dismutase levels were similar to those of active caspase-3. catalase level was significantly higher in the K group than in the T and L2 groups (P = 0.045). Malondialdehyde activity was considerably higher in the L1 and L2 groups compared to the K group (P = 0.023). - CONCLUSIONS: Our results indicated that levosimendan may exert a neuroprotective effect by reducing necrosis in TBI and that levosimendan does not affect apoptosis and antioxidant levels in TBI. Comprehensive studies are needed to elucidate the effect of levosimendan on TBI fully.

Description

Akyol, Mehmet Edip/0000-0002-5198-0219

Keywords

Apoptosis, Levosimendan, Necrosis, Reactive Oxygen Species, Traumatic Brain Injury

Turkish CoHE Thesis Center URL

WoS Q

Q3

Scopus Q

Q2

Source

31st Scientific Congress of the Turkish Neurosurgical Society -- 2022 -- TURKEY

Volume

168

Issue

Start Page

E432

End Page

E441