YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Effects of the Stochastic and Deterministic Movements in the Optimization Processes

dc.authorid Seyyarer, Ebubekir/0000-0002-8981-0266
dc.authorscopusid 57207461582
dc.authorscopusid 6602929072
dc.authorscopusid 57196895937
dc.authorwosid Seyyarer, Ebubekir/Aep-6947-2022
dc.authorwosid Karci, Ali/Aag-5337-2019
dc.authorwosid Ates, Abdullah/V-6929-2018
dc.contributor.author Seyyarer, Ebubekir
dc.contributor.author Karci, Ali
dc.contributor.author Ates, Abdullah
dc.date.accessioned 2025-05-10T17:13:56Z
dc.date.available 2025-05-10T17:13:56Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Seyyarer, Ebubekir] Van Yuzuncu Yil Univ, Dept Comp Programming, TR-65080 Van, Turkey; [Karci, Ali; Ates, Abdullah] Inonu Univ, Dept Comp Engn, TR-44000 Malatya, Turkey en_US
dc.description Seyyarer, Ebubekir/0000-0002-8981-0266 en_US
dc.description.abstract In this study, a linear function representing the iris data set is obtained by making use of the MLR model. SGD, Momentum, Adagrad, RMSProp, Adadelta and Adam optimization algorithms are used to find the optimum values of coefficients of this function. An initialization method with initial population is recommended for these coefficients, which are generally initialized with a fixed or random value in MLRs. IAE, ITAE, MSE and ISE error functions are used as objective functions in the MLR model used. Initial populations of the methods are developed by using a proposed deterministic and classical stochastic initialization methods between upper and lower bounds. The method that are initialized stochasticaly is run several times as seen in literature and the mean values are calculated. On the other hand, the application that is initialized deterministic is only run once. According to the results of deterministic and stochastic initialization methods, it is observed that the coefficients and iteration numbers obtained in both applications are close to each other. Despite very high temporal gain is achieved from the application that is initialized deterministic. As a result of the comparisons, the linear model obtained with Adadelta and MSE reaches the result in the shortest time. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.17341/gazimmfd.887976
dc.identifier.endpage 965 en_US
dc.identifier.issn 1300-1884
dc.identifier.issn 1304-4915
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85128771373
dc.identifier.scopusquality Q3
dc.identifier.startpage 949 en_US
dc.identifier.trdizinid 509288
dc.identifier.uri https://doi.org/10.17341/gazimmfd.887976
dc.identifier.uri https://hdl.handle.net/20.500.14720/8338
dc.identifier.volume 37 en_US
dc.identifier.wos WOS:000827262200028
dc.identifier.wosquality Q4
dc.language.iso tr en_US
dc.publisher Gazi Univ, Fac Engineering Architecture en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Deterministic Initial Population en_US
dc.subject Stochastic Initial Population en_US
dc.subject Multivariate Linear Regression en_US
dc.subject Optimization Algorithms en_US
dc.subject Iris Data Set en_US
dc.title Effects of the Stochastic and Deterministic Movements in the Optimization Processes en_US
dc.type Article en_US

Files