The Study Variety of Conformal Kinematics
dc.authorid | Kalkan Tasdemir, Bahar/0000-0001-5740-2180 | |
dc.authorid | Siegele, Johannes/0000-0002-8790-0081 | |
dc.authorid | Schrocker, Hans-Peter/0000-0003-2601-6695 | |
dc.authorscopusid | 57348892100 | |
dc.authorscopusid | 55849149600 | |
dc.authorscopusid | 8839967500 | |
dc.authorscopusid | 57207687981 | |
dc.authorwosid | Kalkan, Bahar/Gsn-3399-2022 | |
dc.contributor.author | Kalkan, Bahar | |
dc.contributor.author | Li, Zijia | |
dc.contributor.author | Schroecker, Hans-Peter | |
dc.contributor.author | Siegele, Johannes | |
dc.date.accessioned | 2025-05-10T17:12:00Z | |
dc.date.available | 2025-05-10T17:12:00Z | |
dc.date.issued | 2022 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Kalkan, Bahar] Van Yuzuncu Yil Univ, Dept Math, Van, Turkey; [Li, Zijia] Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing, Peoples R China; [Schroecker, Hans-Peter; Siegele, Johannes] Univ Innsbruck, Dept Basic Sci Engn Sci, Innsbruck, Austria | en_US |
dc.description | Kalkan Tasdemir, Bahar/0000-0001-5740-2180; Siegele, Johannes/0000-0002-8790-0081; Schrocker, Hans-Peter/0000-0003-2601-6695 | en_US |
dc.description.abstract | We introduce the Study variety of conformal kinematics and investigate some of its properties. The Study variety is a projective variety of dimension ten and degree twelve in real projective space of dimension 15, and it generalizes the well-known Study quadric model of rigid body kinematics. Despite its high dimension, co-dimension, and degree it is amenable to concrete calculations via conformal geometric algebra (CGA) associated to three-dimensional Euclidean space. Calculations are facilitated by a four quaternion representation which extends the dual quaternion description of rigid body kinematics. In particular, we study straight lines on the Study variety. It turns out that they are related to a class of one-parametric conformal motions introduced by Dorst in (Math Comput Sci 10:97-113, 2016, https://doi.org/10.1007/s11786-016-0250-8). Similar to rigid body kinematics, straight lines (that is, Dorst's motions) are important for the decomposition of rational conformal motions into lower degree motions via the factorization of certain polynomials with coefficients in CGA. | en_US |
dc.description.sponsorship | BIDEB 2211-E scholarship programme of The Scientific and Technological Research Council of Turkey; Austrian Science Fund (FWF) [P 33397-N] | en_US |
dc.description.sponsorship | Bahar Kalkan was supported by the BIDEB 2211-E scholarship programme of The Scientific and Technological Research Council of Turkey. Johannes Siegele was supported by Austrian Science Fund (FWF) P 33397-N (Rotor Polynomials: Algebra and Geometry of Conformal Motions). | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1007/s00006-022-01227-x | |
dc.identifier.issn | 0188-7009 | |
dc.identifier.issn | 1661-4909 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.pmid | 35873187 | |
dc.identifier.scopus | 2-s2.0-85134422019 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.uri | https://doi.org/10.1007/s00006-022-01227-x | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/7776 | |
dc.identifier.volume | 32 | en_US |
dc.identifier.wos | WOS:000826937300001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Springer Basel Ag | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Simple Motion | en_US |
dc.subject | Study Variety | en_US |
dc.subject | Study Quadric | en_US |
dc.subject | Null Quadric | en_US |
dc.subject | Four Quaternion Representation | en_US |
dc.subject | Factorization | en_US |
dc.title | The Study Variety of Conformal Kinematics | en_US |
dc.type | Article | en_US |