YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Study Variety of Conformal Kinematics

dc.authorid Kalkan Tasdemir, Bahar/0000-0001-5740-2180
dc.authorid Siegele, Johannes/0000-0002-8790-0081
dc.authorid Schrocker, Hans-Peter/0000-0003-2601-6695
dc.authorscopusid 57348892100
dc.authorscopusid 55849149600
dc.authorscopusid 8839967500
dc.authorscopusid 57207687981
dc.authorwosid Kalkan, Bahar/Gsn-3399-2022
dc.contributor.author Kalkan, Bahar
dc.contributor.author Li, Zijia
dc.contributor.author Schroecker, Hans-Peter
dc.contributor.author Siegele, Johannes
dc.date.accessioned 2025-05-10T17:12:00Z
dc.date.available 2025-05-10T17:12:00Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kalkan, Bahar] Van Yuzuncu Yil Univ, Dept Math, Van, Turkey; [Li, Zijia] Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing, Peoples R China; [Schroecker, Hans-Peter; Siegele, Johannes] Univ Innsbruck, Dept Basic Sci Engn Sci, Innsbruck, Austria en_US
dc.description Kalkan Tasdemir, Bahar/0000-0001-5740-2180; Siegele, Johannes/0000-0002-8790-0081; Schrocker, Hans-Peter/0000-0003-2601-6695 en_US
dc.description.abstract We introduce the Study variety of conformal kinematics and investigate some of its properties. The Study variety is a projective variety of dimension ten and degree twelve in real projective space of dimension 15, and it generalizes the well-known Study quadric model of rigid body kinematics. Despite its high dimension, co-dimension, and degree it is amenable to concrete calculations via conformal geometric algebra (CGA) associated to three-dimensional Euclidean space. Calculations are facilitated by a four quaternion representation which extends the dual quaternion description of rigid body kinematics. In particular, we study straight lines on the Study variety. It turns out that they are related to a class of one-parametric conformal motions introduced by Dorst in (Math Comput Sci 10:97-113, 2016, https://doi.org/10.1007/s11786-016-0250-8). Similar to rigid body kinematics, straight lines (that is, Dorst's motions) are important for the decomposition of rational conformal motions into lower degree motions via the factorization of certain polynomials with coefficients in CGA. en_US
dc.description.sponsorship BIDEB 2211-E scholarship programme of The Scientific and Technological Research Council of Turkey; Austrian Science Fund (FWF) [P 33397-N] en_US
dc.description.sponsorship Bahar Kalkan was supported by the BIDEB 2211-E scholarship programme of The Scientific and Technological Research Council of Turkey. Johannes Siegele was supported by Austrian Science Fund (FWF) P 33397-N (Rotor Polynomials: Algebra and Geometry of Conformal Motions). en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s00006-022-01227-x
dc.identifier.issn 0188-7009
dc.identifier.issn 1661-4909
dc.identifier.issue 4 en_US
dc.identifier.pmid 35873187
dc.identifier.scopus 2-s2.0-85134422019
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.1007/s00006-022-01227-x
dc.identifier.uri https://hdl.handle.net/20.500.14720/7776
dc.identifier.volume 32 en_US
dc.identifier.wos WOS:000826937300001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer Basel Ag en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Simple Motion en_US
dc.subject Study Variety en_US
dc.subject Study Quadric en_US
dc.subject Null Quadric en_US
dc.subject Four Quaternion Representation en_US
dc.subject Factorization en_US
dc.title The Study Variety of Conformal Kinematics en_US
dc.type Article en_US

Files