YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Sex Estimation From Sacrum and Coccyx With Discriminant Analyses and Neural Networks in an Equally Distributed Population by Age and Sex

dc.authorid Asirdizer, Mahmut/0000-0001-7596-5892
dc.authorid Etli, Yasin/0000-0002-7369-6083
dc.authorscopusid 57193070823
dc.authorscopusid 6602339880
dc.authorscopusid 55429723100
dc.authorscopusid 13005120600
dc.authorscopusid 55682194900
dc.authorwosid Hekimoglu, Yavuz/A-8409-2017
dc.authorwosid Yavuz, Alpaslan/H-3947-2014
dc.authorwosid Asirdizer, Mahmut/Aaa-2897-2020
dc.authorwosid Etli, Yasin/Iam-4569-2023
dc.contributor.author Etli, Yasin
dc.contributor.author Asirdizer, Mahmut
dc.contributor.author Hekimoglu, Yavuz
dc.contributor.author Keskin, Siddik
dc.contributor.author Yavuz, Alpaslan
dc.date.accessioned 2025-05-10T17:33:37Z
dc.date.available 2025-05-10T17:33:37Z
dc.date.issued 2019
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Etli, Yasin] Selcuk Univ, Hosp Fac Med, Dept Forens Med, Konya, Turkey; [Asirdizer, Mahmut] Van Yuzuncu Yil Univ, Fac Med, Dept Forens Med, Van, Turkey; [Hekimoglu, Yavuz] Namik Kemal Univ, Fac Med, Dept Forens Med, Tekirdag, Turkey; [Keskin, Siddik] Van Yuzuncu Yil Univ, Fac Med, Dept Biostat, Van, Turkey; [Yavuz, Alpaslan] Hlth Sci Univ, Antalya Training & Res Hosp, Dept Radiol, Antalya, Turkey en_US
dc.description Asirdizer, Mahmut/0000-0001-7596-5892; Etli, Yasin/0000-0002-7369-6083 en_US
dc.description.abstract Sex estimation is an essential step in the process of the identification of the skeletal remains in forensic anthropology since it reduces the number of possible matches by half. In this study, sex estimation with 21 sacral and coccygeal metric parameters obtained from Computerized Tomography images of a Turkish population which consists of 480 patients that are equalized according to their sexes and ages, is performed. Univariate discriminant analysis, linear discriminant function analysis, stepwise discriminant function analysis, and multilayer perceptron neural networks are used in this study. A maximum of 67.1% accuracy for univariate discriminant analysis, 82.5% for linear discriminant function analysis, 78.8% for stepwise discriminant function analysis, and 86.3% for multilayer perceptron neural networks, were achieved. Although it does not reach an acceptable accuracy rate of 95% or more for sacrum and coccyx, sex estimation with neural networks is a promising field of research in corpses where identification is otherwise not possible, and further studies with other bones and with new techniques might give useful information. (C) 2019 Elsevier B.V. All rights reserved. en_US
dc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
dc.identifier.doi 10.1016/j.forsciint.2019.109955
dc.identifier.issn 0379-0738
dc.identifier.issn 1872-6283
dc.identifier.pmid 31541936
dc.identifier.scopus 2-s2.0-85072241658
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.forsciint.2019.109955
dc.identifier.uri https://hdl.handle.net/20.500.14720/13553
dc.identifier.volume 303 en_US
dc.identifier.wos WOS:000496967700024
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier Ireland Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Sacrum en_US
dc.subject Coccyx en_US
dc.subject Sex Estimation en_US
dc.subject Discriminant Function Analysis en_US
dc.subject Neural en_US
dc.subject Networks en_US
dc.title Sex Estimation From Sacrum and Coccyx With Discriminant Analyses and Neural Networks in an Equally Distributed Population by Age and Sex en_US
dc.type Article en_US

Files