YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Statistical Inference for Geometric Process With the Rayleigh Distribution

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Ankara Univ, Fac Sci

Abstract

The aim of this study is to investigate the solution of the statistical inference problem for the geometric process (GP) when the distribution of first occurrence time is assumed to be Rayleigh. Maximum likelihood (ML) estimators for the parameters of GP, where a and lambda are the ratio parameter of GP and scale parameter of Rayleigh distribution, respectively, are obtained. In addition, we derive some important asymptotic properties of these estimators such as normality and consistency. Then we run some simulation studies by different parameter values to compare the estimation performances of the obtained ML estimators with the non-parametric modified moment (MM) estimators. The results of the simulation studies show that the obtained estimators are more efficient than the MM estimators.

Description

Bicer, Cenker/0000-0003-2222-3208; Demirci Bicer, Hayrinisa/0000-0002-1520-5004

Keywords

Parameter Estimation, Geometric Process, Maximum Likelihood Estimators, Asymptotic Distribution

Turkish CoHE Thesis Center URL

WoS Q

N/A

Scopus Q

N/A

Source

Volume

68

Issue

1

Start Page

149

End Page

160