Statistical Inference for Geometric Process With the Rayleigh Distribution
dc.authorid | Bicer, Cenker/0000-0003-2222-3208 | |
dc.authorid | Demirci Bicer, Hayrinisa/0000-0002-1520-5004 | |
dc.authorwosid | Aydoğdu, Halil/Aah-3036-2020 | |
dc.contributor.author | Bicer, Cenker | |
dc.contributor.author | Bicer, Hayrinisa Demirci | |
dc.contributor.author | Kara, Mahmut | |
dc.contributor.author | Aydogdu, Halil | |
dc.date.accessioned | 2025-05-10T17:43:21Z | |
dc.date.available | 2025-05-10T17:43:21Z | |
dc.date.issued | 2019 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Bicer, Cenker; Bicer, Hayrinisa Demirci] Kirikkale Univ, Fac Sci & Arts, Dept Stat, Kirikkale, Turkey; [Kara, Mahmut] Yuzuncu Yil Univ, Fac Sci & Arts, Dept Stat, Van, Turkey; [Aydogdu, Halil] Ankara Univ, Fac Sci, Dept Stat, Ankara, Turkey | en_US |
dc.description | Bicer, Cenker/0000-0003-2222-3208; Demirci Bicer, Hayrinisa/0000-0002-1520-5004 | en_US |
dc.description.abstract | The aim of this study is to investigate the solution of the statistical inference problem for the geometric process (GP) when the distribution of first occurrence time is assumed to be Rayleigh. Maximum likelihood (ML) estimators for the parameters of GP, where a and lambda are the ratio parameter of GP and scale parameter of Rayleigh distribution, respectively, are obtained. In addition, we derive some important asymptotic properties of these estimators such as normality and consistency. Then we run some simulation studies by different parameter values to compare the estimation performances of the obtained ML estimators with the non-parametric modified moment (MM) estimators. The results of the simulation studies show that the obtained estimators are more efficient than the MM estimators. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.doi | 10.31801/cfsuasmas.443690 | |
dc.identifier.endpage | 160 | en_US |
dc.identifier.issn | 1303-5991 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 149 | en_US |
dc.identifier.trdizinid | 377516 | |
dc.identifier.uri | https://doi.org/10.31801/cfsuasmas.443690 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/15816 | |
dc.identifier.volume | 68 | en_US |
dc.identifier.wos | WOS:000463698900013 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Ankara Univ, Fac Sci | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Parameter Estimation | en_US |
dc.subject | Geometric Process | en_US |
dc.subject | Maximum Likelihood Estimators | en_US |
dc.subject | Asymptotic Distribution | en_US |
dc.title | Statistical Inference for Geometric Process With the Rayleigh Distribution | en_US |
dc.type | Article | en_US |