YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Statistical Inference for Geometric Process With the Rayleigh Distribution

dc.authorid Bicer, Cenker/0000-0003-2222-3208
dc.authorid Demirci Bicer, Hayrinisa/0000-0002-1520-5004
dc.authorwosid Aydoğdu, Halil/Aah-3036-2020
dc.contributor.author Bicer, Cenker
dc.contributor.author Bicer, Hayrinisa Demirci
dc.contributor.author Kara, Mahmut
dc.contributor.author Aydogdu, Halil
dc.date.accessioned 2025-05-10T17:43:21Z
dc.date.available 2025-05-10T17:43:21Z
dc.date.issued 2019
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Bicer, Cenker; Bicer, Hayrinisa Demirci] Kirikkale Univ, Fac Sci & Arts, Dept Stat, Kirikkale, Turkey; [Kara, Mahmut] Yuzuncu Yil Univ, Fac Sci & Arts, Dept Stat, Van, Turkey; [Aydogdu, Halil] Ankara Univ, Fac Sci, Dept Stat, Ankara, Turkey en_US
dc.description Bicer, Cenker/0000-0003-2222-3208; Demirci Bicer, Hayrinisa/0000-0002-1520-5004 en_US
dc.description.abstract The aim of this study is to investigate the solution of the statistical inference problem for the geometric process (GP) when the distribution of first occurrence time is assumed to be Rayleigh. Maximum likelihood (ML) estimators for the parameters of GP, where a and lambda are the ratio parameter of GP and scale parameter of Rayleigh distribution, respectively, are obtained. In addition, we derive some important asymptotic properties of these estimators such as normality and consistency. Then we run some simulation studies by different parameter values to compare the estimation performances of the obtained ML estimators with the non-parametric modified moment (MM) estimators. The results of the simulation studies show that the obtained estimators are more efficient than the MM estimators. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.31801/cfsuasmas.443690
dc.identifier.endpage 160 en_US
dc.identifier.issn 1303-5991
dc.identifier.issue 1 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 149 en_US
dc.identifier.trdizinid 377516
dc.identifier.uri https://doi.org/10.31801/cfsuasmas.443690
dc.identifier.uri https://hdl.handle.net/20.500.14720/15816
dc.identifier.volume 68 en_US
dc.identifier.wos WOS:000463698900013
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Ankara Univ, Fac Sci en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Parameter Estimation en_US
dc.subject Geometric Process en_US
dc.subject Maximum Likelihood Estimators en_US
dc.subject Asymptotic Distribution en_US
dc.title Statistical Inference for Geometric Process With the Rayleigh Distribution en_US
dc.type Article en_US

Files