Covid-19 Diagnosis on Ct Images With Bayes Optimization-Based Deep Neural Networks and Machine Learning Algorithms
dc.authorid | Canayaz, Murat/0000-0001-8120-5101 | |
dc.authorid | Ozdag, Recep/0000-0001-5247-5591 | |
dc.authorid | Demir, Murat/0000-0001-7362-0401 | |
dc.authorid | Sehribanoglu, Sanem/0000-0002-3099-7599 | |
dc.authorscopusid | 56565518400 | |
dc.authorscopusid | 55357508300 | |
dc.authorscopusid | 7801614799 | |
dc.authorscopusid | 36779318200 | |
dc.authorwosid | Sehribanoglu, Sanem/Aaj-6148-2021 | |
dc.authorwosid | Demi̇r, Murat/Aae-3081-2020 | |
dc.authorwosid | Canayaz, Murat/Agd-2513-2022 | |
dc.contributor.author | Canayaz, Murat | |
dc.contributor.author | Sehribanoglu, Sanem | |
dc.contributor.author | Ozdag, Recep | |
dc.contributor.author | Demir, Murat | |
dc.date.accessioned | 2025-05-10T17:37:26Z | |
dc.date.available | 2025-05-10T17:37:26Z | |
dc.date.issued | 2022 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Canayaz, Murat; Ozdag, Recep] Van Yuzuncu Yil Univ, Dept Comp Engn, TR-65100 Van, Turkey; [Sehribanoglu, Sanem] Van Yuzuncu Yil Univ, Dept Econometr, TR-65100 Van, Turkey; [Demir, Murat] Mus Alpaslan Univ, Dept Software Engn, TR-49100 Mus, Turkey | en_US |
dc.description | Canayaz, Murat/0000-0001-8120-5101; Ozdag, Recep/0000-0001-5247-5591; Demir, Murat/0000-0001-7362-0401; Sehribanoglu, Sanem/0000-0002-3099-7599 | en_US |
dc.description.abstract | Early diagnosis of COVID-19, the new coronavirus disease, is considered important for the treatment and control of this disease. The diagnosis of COVID-19 is based on two basic approaches of laboratory and chest radiography, and there has been a significant increase in studies performed in recent months by using chest computed tomography (CT) scans and artificial intelligence techniques. Classification of patient CT scans results in a serious loss of radiology professionals' valuable time. Considering the rapid increase in COVID-19 infections, in order to automate the analysis of CT scans and minimize this loss of time, in this paper a new method is proposed using BO (BO)-based MobilNetv2, ResNet-50 models, SVM and kNN machine learning algorithms. In this method, an accuracy of 99.37% was achieved with an average precision of 99.38%, 99.36% recall and 99.37% F-score on datasets containing COVID and non-COVID classes. When we examine the performance results of the proposed method, it is predicted that it can be used as a decision support mechanism with high classification success for the diagnosis of COVID-19 with CT scans. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1007/s00521-022-07052-4 | |
dc.identifier.endpage | 5365 | en_US |
dc.identifier.issn | 0941-0643 | |
dc.identifier.issn | 1433-3058 | |
dc.identifier.issue | 7 | en_US |
dc.identifier.pmid | 35250180 | |
dc.identifier.scopus | 2-s2.0-85125416894 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 5349 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00521-022-07052-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/14384 | |
dc.identifier.volume | 34 | en_US |
dc.identifier.wos | WOS:000762199300001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Springer London Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Coronavirus | en_US |
dc.subject | Chest Computed Tomography | en_US |
dc.subject | Knn | en_US |
dc.subject | Svm | en_US |
dc.subject | Bayesian Optimization | en_US |
dc.title | Covid-19 Diagnosis on Ct Images With Bayes Optimization-Based Deep Neural Networks and Machine Learning Algorithms | en_US |
dc.type | Article | en_US |