YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Covid-19 Diagnosis on Ct Images With Bayes Optimization-Based Deep Neural Networks and Machine Learning Algorithms

dc.authorid Canayaz, Murat/0000-0001-8120-5101
dc.authorid Ozdag, Recep/0000-0001-5247-5591
dc.authorid Demir, Murat/0000-0001-7362-0401
dc.authorid Sehribanoglu, Sanem/0000-0002-3099-7599
dc.authorscopusid 56565518400
dc.authorscopusid 55357508300
dc.authorscopusid 7801614799
dc.authorscopusid 36779318200
dc.authorwosid Sehribanoglu, Sanem/Aaj-6148-2021
dc.authorwosid Demi̇r, Murat/Aae-3081-2020
dc.authorwosid Canayaz, Murat/Agd-2513-2022
dc.contributor.author Canayaz, Murat
dc.contributor.author Sehribanoglu, Sanem
dc.contributor.author Ozdag, Recep
dc.contributor.author Demir, Murat
dc.date.accessioned 2025-05-10T17:37:26Z
dc.date.available 2025-05-10T17:37:26Z
dc.date.issued 2022
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Canayaz, Murat; Ozdag, Recep] Van Yuzuncu Yil Univ, Dept Comp Engn, TR-65100 Van, Turkey; [Sehribanoglu, Sanem] Van Yuzuncu Yil Univ, Dept Econometr, TR-65100 Van, Turkey; [Demir, Murat] Mus Alpaslan Univ, Dept Software Engn, TR-49100 Mus, Turkey en_US
dc.description Canayaz, Murat/0000-0001-8120-5101; Ozdag, Recep/0000-0001-5247-5591; Demir, Murat/0000-0001-7362-0401; Sehribanoglu, Sanem/0000-0002-3099-7599 en_US
dc.description.abstract Early diagnosis of COVID-19, the new coronavirus disease, is considered important for the treatment and control of this disease. The diagnosis of COVID-19 is based on two basic approaches of laboratory and chest radiography, and there has been a significant increase in studies performed in recent months by using chest computed tomography (CT) scans and artificial intelligence techniques. Classification of patient CT scans results in a serious loss of radiology professionals' valuable time. Considering the rapid increase in COVID-19 infections, in order to automate the analysis of CT scans and minimize this loss of time, in this paper a new method is proposed using BO (BO)-based MobilNetv2, ResNet-50 models, SVM and kNN machine learning algorithms. In this method, an accuracy of 99.37% was achieved with an average precision of 99.38%, 99.36% recall and 99.37% F-score on datasets containing COVID and non-COVID classes. When we examine the performance results of the proposed method, it is predicted that it can be used as a decision support mechanism with high classification success for the diagnosis of COVID-19 with CT scans. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s00521-022-07052-4
dc.identifier.endpage 5365 en_US
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.issue 7 en_US
dc.identifier.pmid 35250180
dc.identifier.scopus 2-s2.0-85125416894
dc.identifier.scopusquality Q1
dc.identifier.startpage 5349 en_US
dc.identifier.uri https://doi.org/10.1007/s00521-022-07052-4
dc.identifier.uri https://hdl.handle.net/20.500.14720/14384
dc.identifier.volume 34 en_US
dc.identifier.wos WOS:000762199300001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Coronavirus en_US
dc.subject Chest Computed Tomography en_US
dc.subject Knn en_US
dc.subject Svm en_US
dc.subject Bayesian Optimization en_US
dc.title Covid-19 Diagnosis on Ct Images With Bayes Optimization-Based Deep Neural Networks and Machine Learning Algorithms en_US
dc.type Article en_US

Files