YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Synthesis and Examination of 1,2,4-Triazine Hybrids as Potential Inhibitory Drugs: Inhibition Effects on Ache and Gst Enzymes in Silico and in Vitro Conditions

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Abstract

The crucial functions of acetylcholinesterase (AChE) in neurotransmission and glutathione S-transferase (GST) in detoxification and cellular protection underscore their pivotal roles as key enzymes, essential for maintaining the integrity of neurological and cellular homeostasis. For this purpose, a series of 1,2,4-triazine-sulfonamide hybrids (3a-r) was successfully synthesized, and subsequently evaluated for their inhibitory effects on AChE and GST. The investigation was complemented by molecular docking studies and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) predictions. The synthesized hybrids demonstrated significant promise in inhibiting both AChE and GST activities. Molecular docking analyses provided insights into the interactions between the compounds and the target enzymes, shedding light on potential binding modes and key amino acid residues involved. Furthermore, the study benefited from ADMET predictions, offering valuable information on the compounds' pharmacokinetic properties and potential toxicity. The promising results obtained from this comprehensive approach highlight the potential of these 1,2,4-triazine-sulfonamide hybrids as effective inhibitors of AChE and GST, paving the way for further development and optimization in the pursuit of novel therapeutic agents. A series of 1,2,4-triazine-sulfonamide hybrids (3a-r) was synthesized and evaluated for their inhibitory effects on acetylcholinesterase (AChE) and glutathione S-transferase (GST). The hybrids demonstrated promising inhibition of both AChE and GST activities. Molecular docking analyses provided insights into the interactions between the compounds and the target enzymes. image

Description

Rozbicki, Przemyslaw/0000-0003-1248-4121; Cetin, Adnan/0000-0003-4838-1503

Keywords

Docking, Drug Discovery, Enzyme Inhibition, Heterocyclic, Spectroscopy

Turkish CoHE Thesis Center URL

WoS Q

Q1

Scopus Q

Q1

Source

Volume

357

Issue

9

Start Page

End Page