YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Comparison of Different Estimation Methods for Extreme Value Distribution

dc.authorscopusid 57224920023
dc.authorscopusid 36910855300
dc.authorscopusid 57224925753
dc.authorwosid Ozdemir, Onur/Kle-1533-2024
dc.contributor.author Yilmaz, Asuman
dc.contributor.author Kara, Mahmut
dc.contributor.author Ozdemir, Onur
dc.date.accessioned 2025-05-10T17:20:37Z
dc.date.available 2025-05-10T17:20:37Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Yilmaz, Asuman; Kara, Mahmut; Ozdemir, Onur] Yuzuncu Yil Univ, Fac Sci, Dept Stat, TR-65080 Tusba, Van, Turkey en_US
dc.description.abstract The extreme value distribution was developed for modeling extreme-order statistics or extreme events. In this study, we discuss the distribution of the largest extreme. The main objective of this paper is to determine the best estimators of the unknown parameters of the extreme value distribution. Thus, both classical and Bayesian methods are used. The classical estimation methods under consideration are maximum likelihood estimators, moment's estimators, least squares estimators, and weighted least squares estimators, percentile estimators, the ordinary least squares estimators, best linear unbiased estimators, L-moments estimators, trimmed L-moments estimators, and Bain and Engelhardt estimators. We also propose new estimators for the unknown parameters. Bayesian estimators of the parameters are derived by using Lindley's approximation and Markov Chain Monte Carlo methods. The asymptotic confidence intervals are considered by using maximum likelihood estimators. The Bayesian credible intervals are also obtained by using Gibbs sampling. The performances of these estimation methods are compared with respect to their biases and mean square errors through a simulation study. The maximum daily flood discharge (annual) data sets of the Meric River and Feather River are analyzed at the end of the study for a better understanding of the methods presented in this paper. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/02664763.2021.1940109
dc.identifier.endpage 2284 en_US
dc.identifier.issn 0266-4763
dc.identifier.issn 1360-0532
dc.identifier.issue 13-15 en_US
dc.identifier.pmid 35707070
dc.identifier.scopus 2-s2.0-85108670230
dc.identifier.scopusquality Q2
dc.identifier.startpage 2259 en_US
dc.identifier.uri https://doi.org/10.1080/02664763.2021.1940109
dc.identifier.uri https://hdl.handle.net/20.500.14720/10159
dc.identifier.volume 48 en_US
dc.identifier.wos WOS:000662846200001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Extreme Value Distribution en_US
dc.subject Bayesian Methods en_US
dc.subject New Estimators en_US
dc.subject Trimmed L-Moments Estimators en_US
dc.subject L-Moments Estimators en_US
dc.subject Monte Carlo Simulation en_US
dc.title Comparison of Different Estimation Methods for Extreme Value Distribution en_US
dc.type Article en_US

Files