About the Fractal Navier-Stokes Equations

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Int Publ Ag

Abstract

This paper presents a novel formulation of the Navier-Stokes equations within a fractal space-time framework by incorporating the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F<^>{\alpha }$$\end{document}-derivative to model fluid behavior in media with non-integer spatial and temporal dimensions. We derive the generalized fractal Navier-Stokes momentum equation and introduce a corresponding fractal Reynolds number that captures the effects of both spatial fractal dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and temporal fractal dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Analytical solutions are obtained for several classical flow problems adapted to fractal geometries, including fractal Poiseuille flow, planar and generalized Couette flow, and their multi-dimensional extensions. The results reveal that increasing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} leads to nonlinear distortions in velocity profiles, while increasing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} alters the relaxation time and can induce temporal instabilities. Graphical illustrations are provided to demonstrate the influence of fractal dimensions on flow characteristics, offering new insight into the behavior of fluids in complex fractal environments.

Description

Keywords

Fractal Calculus, Fractal Differential Equation, Fractal Couette Flow, Fractal Navier-Stokes Equation, Fractal Poiseuille Flow

Turkish CoHE Thesis Center URL

WoS Q

Q3

Scopus Q

Q4

Source

Iranian Journal of Science

Volume

Issue

Start Page

End Page

Google Scholar Logo
Google Scholar™