About the Fractal Navier-Stokes Equations

dc.authorscopusid 25122552100
dc.authorscopusid 6602747360
dc.authorscopusid 60229503400
dc.authorwosid Khalili Golmankhaneh, Alireza/L-1554-2013
dc.contributor.author Golmankhaneh, Alireza Khalili
dc.contributor.author Myrzakulov, Ratbay
dc.contributor.author Li, Shuming
dc.date.accessioned 2025-12-30T16:04:50Z
dc.date.available 2025-12-30T16:04:50Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Golmankhaneh, Alireza Khalili] Islamic Azad Univ, Dept Phys, Urmia Branch, Orumiyeh, West Azerbaijan, Iran; [Golmankhaneh, Alireza Khalili] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkiye; [Myrzakulov, Ratbay] Eurasian Natl Univ, Eurasian Int Ctr Theoret Phys, Astana, Kazakhstan; [Myrzakulov, Ratbay] Eurasian Natl Univ, Dept Gen, Astana, Kazakhstan; [Li, Shuming] Kansas State Univ, Dept Educ, Topeka, KS USA en_US
dc.description.abstract This paper presents a novel formulation of the Navier-Stokes equations within a fractal space-time framework by incorporating the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F<^>{\alpha }$$\end{document}-derivative to model fluid behavior in media with non-integer spatial and temporal dimensions. We derive the generalized fractal Navier-Stokes momentum equation and introduce a corresponding fractal Reynolds number that captures the effects of both spatial fractal dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and temporal fractal dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Analytical solutions are obtained for several classical flow problems adapted to fractal geometries, including fractal Poiseuille flow, planar and generalized Couette flow, and their multi-dimensional extensions. The results reveal that increasing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} leads to nonlinear distortions in velocity profiles, while increasing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} alters the relaxation time and can induce temporal instabilities. Graphical illustrations are provided to demonstrate the influence of fractal dimensions on flow characteristics, offering new insight into the behavior of fluids in complex fractal environments. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s40995-025-01902-1
dc.identifier.issn 2731-8095
dc.identifier.issn 2731-8109
dc.identifier.scopus 2-s2.0-105024242842
dc.identifier.scopusquality Q4
dc.identifier.uri https://doi.org/10.1007/s40995-025-01902-1
dc.identifier.uri https://hdl.handle.net/20.500.14720/29312
dc.identifier.wos WOS:001631216300001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer Int Publ Ag en_US
dc.relation.ispartof Iranian Journal of Science en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fractal Calculus en_US
dc.subject Fractal Differential Equation en_US
dc.subject Fractal Couette Flow en_US
dc.subject Fractal Navier-Stokes Equation en_US
dc.subject Fractal Poiseuille Flow en_US
dc.title About the Fractal Navier-Stokes Equations en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article

Files