YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Mathematical Analysis of Stochastic Epidemic Model of Mers-Corona & Application of Ergodic Theory

dc.authorid Tunc, Osman/0000-0003-2965-4561
dc.authorid Madi, Elissa Nadia/0000-0001-5557-2231
dc.authorid Ur Rahman, Ghaus/0000-0002-3168-181X
dc.authorid Hussain, Shah/0000-0003-4786-2938
dc.authorid Khan, Hasib/0000-0002-7186-8435
dc.authorscopusid 57365333000
dc.authorscopusid 56638410400
dc.authorscopusid 56106152200
dc.authorscopusid 55258301900
dc.authorscopusid 35792523100
dc.authorwosid Ur Rahman, Ghaus/Mvy-7578-2025
dc.authorwosid Khan, Hasib/Afj-9925-2022
dc.authorwosid Hussain, Shah/Gqh-2827-2022
dc.authorwosid Tunç, Osman/Gre-9544-2022
dc.authorwosid Madi, Elissa Nadia/G-1655-2013
dc.contributor.author Hussain, Shah
dc.contributor.author Tunc, Osman
dc.contributor.author Rahman, Ghaus Ur
dc.contributor.author Khan, Hasib
dc.contributor.author Nadia, Elissa
dc.date.accessioned 2025-05-10T16:45:53Z
dc.date.available 2025-05-10T16:45:53Z
dc.date.issued 2023
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Hussain, Shah; Nadia, Elissa] Univ Sultan Zainal Abidin, Fac Informat & Comp, Besut Campus, Kuala Terengganu, Terengganu, Malaysia; [Tunc, Osman] Van Yuzuncu Yil Univ, Baskale Vocat Sch, Dept Comp Programming, TR-65080 Van, Turkiye; [Rahman, Ghaus Ur] Univ Swat, Dept Math & Stat, Swat, Pakistan; [Khan, Hasib] Prince Sultan Univ, Dept Math & Sci, Riyadh 11586, Saudi Arabia en_US
dc.description Tunc, Osman/0000-0003-2965-4561; Madi, Elissa Nadia/0000-0001-5557-2231; Ur Rahman, Ghaus/0000-0002-3168-181X; Hussain, Shah/0000-0003-4786-2938; Khan, Hasib/0000-0002-7186-8435 en_US
dc.description.abstract The "Middle East Respiratory" (MERS-Cov) is among the world's dangerous diseases that still exist. Presently it is a threat to Arab countries, but it is a horrible prediction that it may propagate like COVID-19. In this article, a stochastic version of the epidemic model, MERS-Cov, is presented. Initially, a mathematical form is given to the dynamics of the disease while incorporating some unpredictable factors. The study of the underlying model shows the existence of positive global solution. Formulating appropriate Lyapunov functionals, the paper will also explore parametric conditions which will lead to the extinction of the disease from a community. Moreover, to reveal that the infection will persist, ergodic stationary distribution will be carried out. It will also be shown that a threshold quantity exists, which will determine some essential parameters for exploring other dynamical aspects of the main model. With the addition of some examples, the underlying stochastic model of MERS-Cov will be studied graphically for more illustration.(c) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.matcom.2022.12.023
dc.identifier.endpage 150 en_US
dc.identifier.issn 0378-4754
dc.identifier.issn 1872-7166
dc.identifier.pmid 36618952
dc.identifier.scopus 2-s2.0-85149794464
dc.identifier.scopusquality Q1
dc.identifier.startpage 130 en_US
dc.identifier.uri https://doi.org/10.1016/j.matcom.2022.12.023
dc.identifier.uri https://hdl.handle.net/20.500.14720/982
dc.identifier.volume 207 en_US
dc.identifier.wos WOS:000923525000001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Mers-Corona Virus en_US
dc.subject Ergodic Theory en_US
dc.subject Disease Persistat en_US
dc.subject Disease Extinction en_US
dc.subject Stability en_US
dc.title Mathematical Analysis of Stochastic Epidemic Model of Mers-Corona & Application of Ergodic Theory en_US
dc.type Article en_US

Files